Facilities & Equipment

Single Molecule Conductivity | Nanoscale Dynamics| Non-linear Spectroscopy and Dynamics|Ultrafast Infrared Sources | Sensors | FLOSS |Plasmonics | Nanomaterials

Single Molecule Conductivity in Organic and Biomimetic Molecules:
(Parissa Yasini and Piret Pikma)
The conductance of single molecules depends not only on how conductive the molecule is but also on how the molecule connects to the electrodes. Our group has designed a conjugated thiol linker which can improve the conductance of the molecule-electrode junction. We continue to explore this topic by using the STM (scanning tunneling microscopy) break-junction method to study the conductance of single conjugated molecules with conjugated thiol linkers.

Conjugated Thiol Linker for Enhanced Conductivity of Gold-Molecule Contacts (Yufan He)

Related Papers

Nanoscale Dynamics at Liquid/Solid Interfaces:
(Parissa Yasini and Piret Pikma)
We use surface charge to control adsorbate-substrate interactions and to tune dynamics at solid-liquid interfaces. We use Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) to study the resulting phenomena:
- Molecular redox dynamics at electrode-electrolyte interfaces.
- Molecular diffusion and self-assembly.

Related Papers

Previous studies:
- Dynamics of surface reconstruction, lifting of reconstruction, nanoscale island decay/growth.
- Atomic and Molecular resolution STM/AFM at Liquid/Solid Interfaces (Yufan He, Tao Ye)
- Potential driven phase transitions in Self-assembled Monolayers (SAM) (Kyoungja Seo)
- Read/Write/Erase nanolithography (Kyoungja Seo)

Nonlinear Optical Studies of Interfaces:
(Stefan Piontek, Yaroslav Aulin, Ares Aguilera, and Thi Tran)
Second order non-linear optical techniques, e.g. Sum Frequency Generation (SFG) and Second Harmonic Generation (SHG), provide both ultrafast time resolution and interface selectivity. Current projects focus on vibrational SFG spectroscopy to reveal the structure of water at mineral surfaces and SHG spectroscopy to probe the overtone region of the O-H strech of interfacial water.



(Stefan Piontek and Yaroslav Aulin)
Surface Vibrational Dynamics can provide details about the H-bonding environment of buried interfaces by measuring the vibrational relaxation times of O-H stretch. Current projects focus on the role of ions and acid-base equilibria at mineral/water interfaces.



Related Papers

Previous studies:
- SHG Spectroscopy & Dynamics of Si, Ge, and SixGe1-x Interfaces (Dora Bodlaki, Vasiliy Fomenko, Julie Fiore, Catherine Faler)

Novel Ultra-Broadband IR Laser Sources:
(Stefan Pointek, and Yaroslav Aulin)
We are developing ultrabroadband IR laser sources providing pulses with bandwidths >1000 cm-1 in the ~1000 - 3000 nm wavelength range.



Related Papers

Previous studies:
- Transform-limited Picosecond Infrared OPA (Dora Bodlaki)

(Dr. Melissandre Richard, Stefan Pointek, and Thao Duong)
The collective excitation of free electrons in a metal nanoparticle results in a localized surface plasmon resonance (LSPR) which is a sensitive probe of nanomaterial and its local dielectric environment. We use the LSPR to detect chemical species and drive chemical processes. Current projects are: Plasmonic Sensing and Plasmonic Dynamics and Catalysis



Related Papers

Fluorescence Detection of Surface Functionality:
FLOSS (Fluorescence Labeling of Surface Species) exploits the sensitivity of fluorescence and the specificity of covalent bond formation to identify and quantify low concentrations of surface functionalities. FLOSS can distinguish between COOH, OH and aldehyde groups and detect down to 1011 functional groups/cm2 on surfaces. This sensitivity is well beyond the detection limits of FTIR and XPS.

FLOSS has been applied to understand SAM photoreactivity and is being extended to other materials.

Related Papers

Previous studies:
- Growth, Stability and Photoreactivity of Self Assembled Monlolayers (Tao Ye, Eric Mc Arthur)

- Bio-Sensors
(Stefan Pointek and Thao Duong)
Detection of bio species (cells, proteins, antibodies, ...) by surface immobilization on piezoelectric sensor devices.

- Hydrogen and Humidity Sensors
(Stefan Pointek and Thao Duong)
In collaboration with ASRD, we are developing surface acoustic wave sensors for NASA applications.

Related Papers

(Stefan Pointek and Thao Duong)
Conventional synthesis of nanoparticles, involve the use of precursors, reducing agents and surfactants.

-Properties of Carbon Nanotubes and other Carbon Materials:
(Dr. Melissandre Richard)
Understanding the interaction between molecules and carbon nanotubes is key to a number of applications. We use NIR, Raman, FTIR, thermogravimetric analysis, TEM, AFM and TPD under vacuum conditions to probe molecular interactions with, and chemical functionality on, carbon materials. Environmental applications include development of solar energy harvesting devices as well as new and better sorbents for pollution control.

Related Papers